
J
H
E
P
0
6
(
2
0
0
8
)
0
4
4

Published by Institute of Physics Publishing for SISSA

Received: January 17, 2008

Revised: April 23, 2008

Accepted: June 2, 2008

Published: June 11, 2008

iGUT (GUT on interval)

Naoyuki Haba, Yutaka Sakamura and Toshifumi Yamashita

Department of Physics, Osaka University,

Toyonaka, Osaka 560-0043, Japan

E-mail: haba@yukawa.kyoto-u.ac.jp, sakamura@riken.jp,

yamasita@eken.phys.nagoya-u.ac.jp

Abstract: We investigate a construction of five-dimensional (5D) grand unified theories

(GUTs) on an interval, which we call iGUTs. We analyze supersymmetric SO(10) iGUT

as an example, where the gauge multiplet is spread over the 5D bulk. The SO(10) is

directly reduced to the standard model gauge symmetry through the interval boundary

conditions. Notice that this rank reduction is impossible in case of GUTs on orbifolds.

Four scenarios are possible according to locations (bulk or brane) of Higgs and matter

fields. We investigate the gauge-coupling unification, the proton decay, the SO(10) GUT

features such as t-b-τ unification and so on in each scenario. We also comment on the flavor

phenomenology.

Keywords: GUT, Beyond Standard Model, Gauge Symmetry, Field Theories in Higher

Dimensions.

mailto:haba@yukawa.kyoto-u.ac.jp
mailto:sakamura@riken.jp
mailto:yamasita@eken.phys.nagoya-u.ac.jp
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
8
)
0
4
4

Contents

1. Introduction 2

2. SO(10) iGUT 3

2.1 Brane Higgs and brane matter 4

2.2 Brane Higgs and bulk matter 5

2.3 Bulk Higgs and brane matter 7

2.4 Bulk Higgs and bulk matter 8

2.4.1 Proton decay 8

2.4.2 Yukawa interactions 9

2.4.3 SUSY breaking 10

3. Gauge coupling unification 11

4. Interval BCs by fake Higgs 13

4.1 General arguments 14

4.1.1 Gauge sector 14

4.1.2 Hypermultiplet sector 15

4.2 Fake Higgs in SO(10) GUT 17

4.2.1 Triplet-doublet splitting 17

4.2.2 Brane Interactions 18

5. Summary and discussion 18

A. KK expansion with boundary masses 20

A.1 Gauge sector 21

A.2 Hypermultiplet sector 23

A.2.1 Boundary mass terms 24

A.2.2 Mixing with boundary fields 27

B. Bases of mode functions 28

B.1 Flat spacetime 29

B.2 Randall-Sundrum spacetime 30

– 1 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
4

1. Introduction

A supersymmetric (SUSY) grand unified theory (GUT) is an attractive candidate as an

underlying theory of the standard model (SM). The strongest reason is that the three SM

gauge couplings seem unified at a high energy scale, ΛG ≃ 2 × 1016 GeV, which is the

so-called GUT scale. However, recent precise measurements of the QCD gauge coupling

show a small but finite deviation from the predicted value of the unification [1]. Also,

some theoretical problems exist in the four-dimensional (4D) minimal SUSY SU(5) GUT.

For example, the triplet-doublet splitting in the Higgs multiplets should be realized by an

unnatural fine-tuning of O(1014). So people pay attention to five-dimensional (5D) SU(5)

GUT on an orbifold [2, 3], which realizes the gauge symmetry breaking and the triplet-

doublet splitting simultaneously through boundary conditions (BCs) of the orbifold. We

do not need to introduce adjoint Higgs fields to break the GUT gauge symmetry which

usually violate the R-symmetry explicitly in the superpotential. Furthermore, a precise

gauge coupling unification (GCU) can be realized by taking the compactification scale

lower than the GUT scale ΛG [4]. This situation corresponds to take the triplet Higgs

masses lighter than ΛG in the 4D GUTs, which however causes too rapid proton decay [5].

This problem is avoidable in the 5D setup, since the triplet Higgs fields get heavy masses

with their chiral partners without violating the R-symmetry [3]. The R-symmetry is valid

to forbid problematic dimension-five operators in general. Thus the 5D GUTs on the

orbifold are attractive from these phenomenological points of view. However the rank of

the GUT gauge symmetry cannot be reduced on the orbifold BCs.1 So the GUTs with

higher ranks than the SM must have extra remaining gauge symmetries, which should be

broken by introducing extra elementary Higgs fields. Thus, if we would like to consider

SO(10) GUT, which unifies quarks and leptons in a single multiplet, we must introduce

additional GUT-symmetry breaking Higgs fields. For example, in ref. [7], the orbifold

BCs break SO(10) into the Pati-Salam gauge group, which is subsequently broken to the

SM by vacuum expectation values (VEVs) of additional Higgs fields. Another setup is a

six-dimensional spacetime where orbifold BCs break SO(10) to the SM gauge group times

an extra U(1) which must be broken by additional Higgs fields again [8]. Anyhow, the

existence of extra gauge groups is inevitable in the orbifold GUTs.

Recently, some people consider an interval instead of the orbifold for the compactifi-

cation space in 5D models [9]. It provides larger class of BCs than the orbifold, which are

consistent with the action principle. The tree-level unitarity is also maintained for certain

interval BCs [9, 10],2 part of which can be obtained from the orbifold by introducing non-

dynamical Higgs fields (which we call fake Higgs fields) on the orbifold boundaries and

taking their VEVs to infinity [9, 12]. It is remarkable that the rank of the gauge group is

reducible by the interval BCs in contrast to the orbifold. We stress that the interval can

take BCs which the orbifold cannot realize. For this reason, the interval is useful for the

1Precisely speaking, a rank reduction can be possible in a gauge-Higgs unification scenario [6] which is

not considered in this paper.
2The unitarity under the orbifold BCs in the flat extra dimension is guaranteed by an equivalence

theorem [11].
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extra-dimensional model building in various contexts. However, most of the works on the

interval use the interval BCs in models of the electroweak symmetry breaking, namely, the

Higgsless models [9, 13] or the gauge-Higgs unification models [14]. The application of the

interval BCs to the GUT-symmetry breaking has not been studied so far, except for the

trinification model [15].

In this paper, we investigate a construction of 5D N = 1 SUSY GUTs on the interval,

which we call iGUTs. The gauge multiplets are set to be spread over the 5D bulk. The

rank of the GUT gauge symmetry is reduced through the interval BCs differently from the

orbifold. In section 2, we consider SO(10) iGUT, and discuss four scenarios depending on

locations of the Higgs and matter fields in the extra dimension (bulk or boundary). The

discussion on the GCU in the orbifold GUTs [4] is applied for these scenarios in section 3.

In section 4, we review a construction of interval BCs by introducing the fake Higgs fields

on the boundaries and taking their VEVs to infinity. Useful formulae are collected in

appendices. Section 5 is devoted to the summary and discussions.

2. SO(10) iGUT

Let us consider the SO(10) iGUT with the flat metric. In this section, we impose interval

BCs by hand at the two end points, y = 0 and πR, which break SO(10) to the SM gauge

symmetry. Here y is the 5th dimensional coordinate, and we call these two end points as

branes or boundaries in the following discussions. We should remind that any orbifold BCs

cannot realize the direct GUT-symmetry breaking of SO(10) → SM. The minimum field

content is the gauge multiplet 45G, matter multiplets 16M, and a Higgs multiplet 10H.

The doublet Higgs fields of the minimal SUSY SM (MSSM) are contained in 10H. There

are no GUT-symmetry breaking Higgs in this field content. The gauge multiplet is spread

over the 5D bulk, and the matter and Higgs fields are either bulk or brane fields. Realization

of the following BCs by use of the fake Higgs fields will be discussed in section 4.

As for the gauge multiplet, we take the Neumann (Dirichlet) BCs for the SM

(SO(10)/SM) gauge fields Aa
µ (Aâ

µ) on the y = πR boundary, where a (â) denotes the

SM (SO(10)/SM) gauge index. Thus, the gauge symmetry is reduced to the SM one at

y = πR. On the other hand, we take the Neumann BCs for all components of the SO(10)

gauge multiplet at y = 0. Therefore the BCs at both the branes are given as

∂yA
a
µ = ∂yA

â
µ = 0, (y = 0), ∂yA

a
µ = Aâ

µ = 0, (y = πR). (2.1)

The BC at y = 0 makes all components of Ay heavy. Thus, there are no physical degrees

of freedom in Ay, which are absorbed into the longitudinal components of massive gauge

fields. So we focus on Aµ in the following discussions. The BCs in eq. (2.1) give the lightest

mode of Aâ
µ a mass of 1/(2R), while that of Aa

µ remains massless. It means that the 4D

effective theory has the SM gauge symmetry. This is a kind of the Higgsless breaking of

the GUT symmetry.

We should determine the locations of the matter and Higgs fields for the discussion of

phenomenological issues, such as the triplet-doublet splitting, the proton decay, the GCU,
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and so on. There are the following four scenarios according to the 5D locations of the

MSSM Higgs doublets and matter fields.

2.1 Brane Higgs and brane matter

The first scenario is putting both the Higgs doublets and matter fields on the y = πR brane.

The gauge symmetry on this brane is already reduced to the SM one, so that SO(10)-

incomplete multiplets and SO(10)-breaking interactions can be introduced on it. Some

features of the SO(10) GUT are lost in this setup, for example, the t-b-τ unification and

unification of the right-handed neutrinos and other matters. And the charge quantization

Q(p+) = −Q(e−) nor the automatic anomaly cancellation of SO(10) are not guaranteed.

This setup seems not so attractive, however, has the following good features. Absence of

triplet Higgs fields makes the dangerous dimension-five proton decay operators mediated

by them vanish. Dimension-six operators are also absent since the coset space gauge fields

Aâ
µ do not couple to the brane matter fields due to no overlap at y = πR brane.3 As

for intrinsic dimension-five operators suppressed by the cutoff scale, they are (almost)

forbidden by imposing the (approximate) R-symmetry. Remind that this is impossible in

the 4D setup, since the R-symmetry is broken at the GUT scale through the triplet and

adjoint Higgs masses.

The R-symmetry is set to be broken only in the hidden (SUSY-breaking) sector. There

are the following three options for the location of the hidden sector.

Hidden sector localized on the y = 0 brane. The SUSY flavor problem can be

solved by the gaugino mediation [17]. Recalling that the gravitino mass is m3/2 ≃ F/MP

(MP ≃ 1.2 × 1019GeV: 4D Planck scale, F : order parameter of SUSY breaking), the

gaugino mass is expressed as M1/2 = F/(2πRΛ2
∗) ≃ m3/2 × (δ2/ǫ). Here ǫ ≡ Λ∗/MP (Λ∗:

5D cutoff scale), and δ ≡ 1/
√

2πRΛ∗ is the volume suppression factor, which must be less

than one if the 5D description is valid.4 Since Λ∗ is at most the 5D Planck scale M5 that

is related to MP through M2
P = 2πRM3

5 , these quantities satisfy the following relation.

0 < ǫ ≤ δ < 1, (2.2)

where the equality holds when Λ∗ = M5. The other soft SUSY breaking masses are induced

from the gaugino mass through the renormalization group equations (RGEs) though they

are small at the compactification scale, and then the SUSY flavor problem is solved [17].

Therefore the soft SUSY masses are of the order of the gaugino mass in the low energy.5

To be more concrete, in the leading-log approximation, flavor independent soft squared

masses are generated through the gaugino loop as

m̃2 = 8Tg2
4M

2
1/2

ln(Mc/MSUSY)

16π2
∼ M2

1/2, (2.3)

3The extra-dimensional components Aâ
y do not appear in the 4D minimal coupling with the brane fields.

Although higher-derivative interactions of them which are localized on the branes might be possible [12, 16],

we assume their absence in this paper, for simplicity.
4We assume that brane-localized couplings normalized by Λ∗ are of O(1), while the bulk gauge coupling

constant is somewhat large in order to realize the suitable value of the 4D gauge coupling constants.
5The anomaly mediation [18] is effective in the case of heavy gravitino mass with δ2/ǫ ≤ 10−2.
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where T is a group factor being of order 1, g4 is the 4D effective gauge coupling and

Mc ≡ 1/R is the compactification scale.

In this scenario, the µ-term is difficult to be induced from the hidden sector. The

simplest example of generating µ is to introduce a gauge singlet field on the y = πR brane

whose VEV becomes the µ-term [19].

Hidden sector localized on the y = πR brane. The SUSY flavor problem is revived

again as in the 4D GUTs. Thus another flavor-independent SUSY mediation must be

introduced and dominate the gravity mediation for the suitable soft SUSY breaking masses.

The µ-term can be induced by a direct coupling between the hidden sector’s spurion

field X and the Higgs fields as X†HuHd in the Kähler potential [20]. This case tends to

realize a large µ ∼ m3/2× ǫ−1 so that the coupling of X†HuHd should be tuned to be small

in order for µ to be the same order as M1/2 ∼ m3/2 × (δ2/ǫ).6

Radion F -term. The SUSY breaking can be induced through the radion F -term [21, 22],

which is equivalent to the Scherk-Schwarz SUSY breaking [23] in the flat metric [21, 24].7

The gaugino masses are induced from the radion F -term, which derives all soft SUSY

masses through the RGEs as above. The gravitino mass is the same order as the gaugino

mass in this setup as M1/2 ∼ m3/2.

The µ-term might be obtained by introducing an extra singlet.8

2.2 Brane Higgs and bulk matter

The second scenario is putting the matter fields in the bulk while the doublet Higgs fields

remaining on the y = πR brane. As in the first option, the anomaly cancellation of SO(10)

is not automatic. We denote a matter hypermultiplet 16M as (16,16c), where 16 and 16c

correspond to N = 1 SUSY chiral multiplets. We take the BCs as

∂y16 = 16c = 0 (2.4)

at both boundaries. It is worthwhile to notice that the BCs are compatible with the

SO(10) bulk gauge symmetry, in contrast to the orbifold BCs.9 Because the Higgs fields

are localized on the y = πR brane, the Yukawa interactions have to be localized on the

brane, allowing us to introduce appropriate couplings of the MSSM.

Due to the absence of the triplet Higgs fields, dimension-five proton decay operators

induced by them are absent, and the intrinsic dimension-five proton decay operators are

suppressed by imposing the (approximate) R-symmetry as in the scenario in section 2.1.

On the other hand, the dimension-six proton decay processes mediated by the heavy gauge

6In a similar way, the coupling of X†XHuHd should be tuned to be small to avoid a large B-

parameter [17].
7These are also equivalent to putting constant superpotentials in the branes [24, 25].
8There is no direct interaction T †HuHd (T : radion) on the branes in the flat metric.
9For instance, in the SU(5) orbifold model where the BCs breaks SU(5) to the SM symmetry, Dc and

L in the 5̄ multiplet must have opposite parities. Thus, it is impossible for both components to serve

zero-modes from a single 5̄ bulk hypermultiplet, but two multiplets should be introduced [3].
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bosons exist because the matter fields couple to Aâ
µ in the bulk.10 The experimental lower

bound on the lightest KK mass for Aâ
µ, which is a half of the compactification scale, 1/(2R),

is estimated using a formula in ref. [5] as

1

2R
≥ 3 × 1015 GeV

(

gâ
1

g4

)(

τp(p → eπ0)

1.6 × 1033yrs

)1/4 ( |αH |
0.01(GeV)3

)1/2

, (2.5)

where g4 is the unified gauge coupling constant in the effective 4D theory, τp(p → eπ0) is

the lower bound on the proton lifetime whose present value is 1.6 × 1033yrs [1],11 and αH

is a constant of a nucleon-to-vacuum matrix element which would be between 0.003 and

0.03 [27]. It should be noticed that the coupling of the n-th KK mode for Aâ
µ, A

â(n)
µ , to the

matter fields is a new parameter indicated as gâ
n, which is calculated as an overlap integral

of wave functions of the matter fields and A
â(n)
µ , and thus depends on the localization of

the matter fields. The localization of a bulk matter field can be realized by a parity-odd

bulk mass, m, which makes the wave function of the zero mode have an exponential profile,

exp(my). It is straightforward to calculate the overlap integral among two wave functions

of the matter fields and A
â(n)
µ , or that of the zero mode of Aa

µ. Then we obtain the ratio

between the former and the latter as

gâ
n

g4
= 2

√
2
mR

{

−(−1)n(2n − 1) − 4e−2πmRmR
}

(coth(πmR) + 1)

(2n − 1)2 + (4mR)2
. (2.6)

For instance, the ratio for the lightest mode A
â(1)
µ is calculated as gâ

1/g4 =
√

2 for the y = 0

brane-localized matters (m → −∞), gâ
1/g4 = 2

√
2/π = 0.90 for the matter with the flat

profile (m = 0), and gâ
1/g4 = 0 for the y = πR brane-localized matters (m → ∞). In

reality, every A
â(n)
µ also mediates the proton decay, though its contribution is suppressed

by (2n − 1)−2 compared to that of A
â(1)
µ due to the heavier mass. Summing up those

contributions, we find that the effective coupling is given as

(

gâ
eff

g4

)2

≡
∑

n

(

gâ
n

g4

)2
(1/2)2

(n+1/2)2
=π

2(cosh(2πmR)−1)−sinh(2πmR)+2πmRe−2πmR

32mR sinh2(πmR)
.

(2.7)

Then, we effectively have gâ
eff/g4 =

√

3ζR(2)/2 = 1.57 for the y = 0 brane-localized matter,

gâ
eff/g4 =

√

15ζR(4)/2π2 = 0.91 for the matter with the flat profile, and gâ
eff/g4 = 0 for the

y = πR brane-localized matter. Here ζR(x) is the Riemann’s zeta function.

In this way, the value of gâ
eff/g4 becomes small when the 1st and 2nd generation wave

functions are localized around y = πR, and then the proton decay is strongly suppressed,

while the smallness of these generation masses should be realized by small Yukawa cou-

plings on the brane (or by some mechanism, for example, the Froggatt-Nielsen (FN) mech-

anism [28]). On the other hand, if we want to reproduce the fermion mass hierarchy by the

bulk matter localizations [29], the 1st and 2nd generation matter fields should be localized

around the y = 0 brane. In this case, the value of gâ
eff , and thus the dimension-six proton

10In the orbifold models, such dimension-six operators are absent because Dc and L (Q and (Uc, Ec))

reside in different 5̄ (10) multiplets, as mentioned in the footnote 9.
11A more stringent bound, 5.3 × 1033yrs, has been reported in ref. [26].
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decay, are enhanced. As will be shown in section 3, the precise GCU might need unknown

extra fields in the brane Higgs scenarios, so the compactification scale 1/R cannot be de-

termined at the present stage. When this mass is of the order of the GUT scale, the decay

rate of the process p → eπ is enhanced by a factor 6 compared to the minimal SU(5) model.

Anyhow, we should notice that the bulk matter profiles cannot explain all fermion mass

hierarchies and flavor mixings only by themselves due to the bulk SO(10)-symmetry.

The SUSY flavor problem is not solved due to the existence of the bulk matter fields.

Neither the hidden sector on the y = 0 brane nor y = πR brane can solve it. The radion

F -term also induces the SUSY flavor problem due to the generation dependent bulk

matter profiles [30].

In some context it can be solved due to suitable localizations of the matter fields,

as analysed in section 2.4, but, in principle, another flavor-independent SUSY mediation

must be introduced and dominate the gravity mediation for the suitable soft SUSY breaking

parameters.

As for the µ-term, the situation is the same as section 2.1. The interaction X†HuHd

can induce the suitable value of µ when the hidden sector is localized on the y = πR brane.

2.3 Bulk Higgs and brane matter

The third scenario is putting the 10H Higgs hypermultiplet in the bulk whereas the matter

fields on the y = πR brane.12 As the first option in section 2.1, the introduction of the

matter fields on the SO(10)-breaking brane means that the charge quantization nor the

automatic anomaly cancellation are no longer guaranteed. Denoting the hypermultiplet

10H as (H,Hc) (Hc: chiral partner), we take BCs for 10H as

∂yH = Hc = 0, (y = 0), ∂yHD = HT = Hc
D = ∂yH

c
T = 0, (y = πR), (2.8)

where H(c) = (H
(c)
T ,H

(c)
D ) with H

(c)
T (H

(c)
D ) being the triplet (doublet) Higgs field. Here

we omit an index that labels two different Higgs fields, i.e. one forms the up-type Yukawa

interactions and the other does the down-type ones. The triplet-doublet splitting is realized

through these BCs similarly to the 5D SU(5) GUT on the orbifold [2].

Again, although the SO(10)-relations such as the t-b-τ unification are lost, appropriate

Yukawa interactions and Majorana masses of the right-handed neutrinos can be introduced

on the y = πR brane. Since the triplet Higgs fields, HT , have the Dirichlet BC, they do not

couple with the brane-localized quarks and leptons. The R-symmetry forbids the dangerous

intrinsic dimension-five proton decay operators.

In section 3, we will show the bulk Higgs is preferable for the accurate GCU, where

the favorite value of 1/(2R) is about of O(1014) GeV. This seems dangerous for the proton

decay through the dimension-six operators. Nevertheless, this scenario does not have the

dimension-six proton decay processes, as the scenario in section 2.1. Furthermore, this

setup can solve the SUSY flavor problem when the hidden sector is localized on the y = 0

brane via the gaugino mediation as in section 2.1. A difference here is that the bulk

12A case of the matter fields localized on the y = 0 brane cannot reproduce the realistic fermion mass

spectrum.
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Higgs multiplets can also play a role of the SUSY breaking mediator through the (flavor

dependent) Yukawa interactions. As the gaugino mass, the SUSY-breaking masses of the

Higgs fields, m̃2
h, exist at the tree level via the contact interactions X†XH†H. These

masses contribute to the flavor violation through the loop effects. Such contributions to

the soft squared masses are evaluated in the leading-log approximation as

δm̃2 = 2TY †Y m̃2
h

ln(Mc/MSUSY)

16π2
, (2.9)

where Y is the Yukawa matrix and T is a group factor to be calculated individually. The

patterns of the flavor violations induced by (2.9) are exactly the same as the well-known

results in the MSSM plus the right-handed neutrinos [31, 32] with the universal SUSY

breaking parameters at the cutoff scale, within the leading-log approximation.

In this case the µ-term is generated through X†HuHd with the same order as the

soft SUSY masses, µ ∼ m3/2 × (δ2/ǫ) (∼ M1/2) because of the volume suppression factor

in the interaction (X†HuHd) similar to the gaugino masses. Therefore this scenario is

phenomenologically favorable.13 To be more precise, since the accurate GCU will require

δ ∼ 1/32 and ǫ ∼ 10−2, which are read off from eq. (3.9), the soft SUSY masses and µ are

smaller than the gravitino mass as 0.1 × m3/2.

In the bulk Higgs scenario, the µ-term might be also obtained through a non-canonical

Kähler potential K ∋ HuHd + h.c. on the branes and a vanishing cosmological constant

condition. This picks up the SUSY and R-symmetry breaking effects14 in the supergravity

(SUGRA) setup, which is the so-called Giudice-Masiero (GM) mechanism [33]. It might

induce a small µ-term as µ ∼ m3/2 × δ2, while M1/2 ∼ m3/2 × (δ2/ǫ) or M1/2 ∼ m3/2 for

the brane-localized hidden sector or the radion F -term scenario, respectively.15

2.4 Bulk Higgs and bulk matter

The fourth scenario is putting both the Higgs and matter fields in the bulk. This scenario

guarantees the charge quantization as well as the automatic anomaly cancellation of

SO(10).16 As will be shown in section 3, the bulk Higgs setup is preferable for the accurate

GCU.

2.4.1 Proton decay

The dimension-five proton decay operators can be suppressed by the approximate R-

symmetry, even though the triplet chiral partner Hc
T couples to the matter fields in this

case. It should be noticed that the triplet Higgs components HT become super-heavy

through their R-symmetric KK masses with the chiral partners, Hc
T , instead of R-breaking

13We need a tuned coupling of X†XHuHd to avoid a large B-parameter [17]. The radion F -term might

also solve the SUSY flavor problem, however, the suitable µ-term is not easily generated in the minimal

field content as shown below.
14The Peccei-Quinn (PQ) symmetry is also broken by this non-canonical Kähler potential.
15In both cases the coupling between the gauge fields and the hidden sector fields must be tuned to be

small to realize µ ∼ M1/2. In such a case, the anomaly mediation effects should be also taken into account.
16The automatic anomaly cancellation is lost if an SO(10)-incomplete multiplets are put on the y = πR

brane.
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mixing masses between two HT ’s. This is an essence of the existence of the (approximate)

R-symmetry, which prevents the dimension-five proton decay processes, as keeping the

triplet-doublet splitting [3].

In order to suppress the dimension-six proton decay processes, the 1st and 2nd gener-

ations should be localized on the y = πR brane, as we have already shown in section 2.2.

Let us examine how the proton stability constrains the localization of the matter fields

in more concrete. As discussed in Secion 2.2, the localization of the i-th generation is

controlled by a kink mass mi, and we analyse the constraints on the parameters. The

effective coupling (2.7) for the 1st generation is constrained according to eq. (2.5). For

instance, a value 1/(2R) = 3.6 × 1014GeV which is calculated in Secion 3 using the cen-

tral values insists gâ
eff/g4 < 0.12 for αH = 0.01(GeV)3 in order to be consistent with

τp(p → eπ) > 1.6 × 1033years. This constraint is converted into that of the parameter m1

through eq. (2.7) and we find that m1R > 13.6. This means that the 1st generation should

be strictly localized on the y = πR brane, in practice.

In addition, the localization of the 2nd generation is constrained by another decay

mode τp(p → νµK) > 6.7 × 1032years, which is induced through 161161162162. Now, the

effective coupling is given as

∑

n

gâ
1,n

g4

gâ
2,n

g4

1

(2n + 1)2
=

π

32

{

1

(m1 + m2)R
− e−2πm2R

m1R
− e−2πm1R

m2R

+e2π(m1+m2)R

(

1

m1R
+

1

m2R
− 1

(m1 + m2)R
−2π

)}

×{coth(πm1R) + 1} {coth(πm2R) + 1} , (2.10)

where gâ
i,n is defined by eq. (2.6) with replacing m by mi (i = 1, 2). Assuming the same

constraint (2.5) also for this decay mode, the square root of (2.10) is constrained to be

smaller than 0.15, leading to a constraint on m2. For instance, we have m2R > 4.0 for

m1R = 13.6. For larger m1, the constraint on m2 becomes weaker. In such a case,

another constraint from the same decay mode induced by 1̄621621̄62162 may become

dominant through the quark mixing. It constrains the effective coupling (2.7) with the

replacement m → m2. Then we obtain gâ
eff/g4 < 0.15λ−1, where λ is the mixing angle

between the flavor and the mass eigenstates. If it is given by the CKM mixing, i.e. λ ∼ 0.22,

we obtain m2R > 0.5.

In a similar way, the localization of the 3rd generation is possibly constrained by a

similar mode τp(p → ντK) > 6.7 × 1032years through the quark mixing between the 2nd

and the 3rd generations. If the mixing is given by the CKM angle, i.e. λ2, the upper bound

on the coupling is enhanced by λ−2 compared to that of the 2nd generation, leading to no

constraint on m3.

2.4.2 Yukawa interactions

Due to the 5D N = 1 SUSY in the bulk, the Yukawa interactions cannot be written except

on the branes.

There are the following typical three cases for the locations of the three generation

matters.
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Case A. The 3rd generation is localized around the y = 0 brane.

In this case there is a possibility to ensure the SO(10) GUT feature, i.e., the t-b-τ

unification through the Yukawa interaction on the y = 0 brane. The realistic Yukawa

couplings for the 1st and 2nd generations are introduced on the y = πR brane where the

SO(10) symmetry is broken down to the SM one. We must abandon the possibility to

explain the fermion mass hierarchy by the matter localization, and assume hierarchical

couplings on the brane.

Because the off-diagonal terms in the Yukawa matrices on the y = 0 brane do not

contribute to the CKM mixing due to the SU(2)R symmetry in SO(10), the source of the

mixing should be on the y = πR brane. In order to reproduce the 2-3 mixing, the 3rd

generation has to have an overlapping with this brane no smaller than λ2. This means that

the t-b-τ unification is typically violated by larger than λ4.

Case B. All generations are localized around the y = πR brane, and the Yukawa inter-

actions are also there.

This situation is similar to the scenario in section 2.3, in which the accurate GCU is

realized as keeping the proton stability. However, it looses both the explanation of the

fermion mass hierarchy by their profiles and the t-b-τ unification.

Case C. The 3rd generation is localized around the y = πR brane, and the 1st and 2nd

generations are around the y = 0 brane.

In this case, the proton decays too rapidly through the dimension-six processes, which

is enhanced for the accurate GCU. This difficulty can be avoided when the background

geometry is warped. In the warped background [34], all the KK modes are localized

around the y = πR brane, and thus a mode localized around the y = 0 brane has only a

tiny overlap with Aâ
µ, which suppresses the proton decay.

We introduce Yukawa interactions with O(1) couplings on the SO(10)-breaking y = πR

brane. In this case, although the t-b-τ unification is lost, there is a possibility to explain

the suitable fermion mass hierarchies by the matter profiles [29].

2.4.3 SUSY breaking

In general, due to the existence of the matters in the bulk, the SUSY flavor problem is

not solved unless another flavor-independent SUSY-breaking mediation is introduced and

becomes dominant. Now, the situation is better because the 1st and 2nd generations are

taken away from the y = 0 brane to suppress the proton decay via the dimension six

operators. Thus, if the hidden sector where SUSY is broken is localized on the y = 0

brane, the dangerous contact terms among the hidden sector and the 1st/2nd generation

are suppressed. For example, if we set (m1,m2)R = (13.6, 4.0) and the 3rd generation

localized around the y = 0 brane, the contact terms for the scalar soft masses of the 1st

and 2nd generations are exponentially suppressed as

δm̃2 ∼







10−37 10−24 10−18

10−24 10−11 10−5

10−18 10−5 1






m̃2

0. (2.11)
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Thus, we can conclude that non-negligible contact terms can appear only in the (3, 3)

element, in the flavor basis. In order to evaluate the flavor violation, we have to move to

the mass basis. In the case when the mixing is given by the CKM matrix, the tree level

off-diagonal elements are given as

δm̃2 ∼







λ5 λ3

λ5 λ2

λ3 λ2






m̃2

0. (2.12)

The diagonal elements are generated through the gaugino loop as eq. (2.3) in the

leading-log approximation. Thus, assuming m̃0 ∼ M1/2, we can see that the off-diagonal

elements (2.12) give interesting predictions just around the present bounds, calculated in

ref. [35] for MSUSY ∼ 350GeV and not so large tan β. Now, tan β is large to realize the

t-b-τ unification, and thus the bounds cannot be applied as they are in the reference.

Nevertheless, this observation is useful to get a rough sketch whether the contact terms are

crucially dangerous or not. The actual bounds in this model would be revealed by a more

detailed analysis using the full RGEs, which is one of our future works.

As for the µ-term, the situation is the same as section 2.3, where the direct interaction

X†HuHd on the brane works well. Also, the scalar masses of the Higgs fields exist via

X†XH†H, and contribute to the flavor violation through the loop effects as evaluated in

eq. (2.9), giving a similar contributions as in the MSSM plus the right-handed neutrinos

with the universal soft terms.

3. Gauge coupling unification

Since higher dimensional gauge theories are non-renormalizable, it is not easy to trace

the flow of each gauge coupling constant above the compactification scale. Nevertheless

it is known that, if there is the unified symmetry in the bulk, flows of differences of two

different gauge coupling constants, δα−1
i ≡ α−1

i − α−1
1 , are at most logarithmic in the

orbifold models [3, 4, 12]. Thus we can examine whether the three gauge couplings are

unified or not. Essentially the same discussion can be also applied to the iGUTs, and we

show it in the following.

It is convenient to introduce the following non-analytic but continuous function for

x ≥ 1:

f(x) =

k=kx−1
∑

k=1

(−1)k ln

(

k + 1

k

)

+ (−1)kx ln
(x

k x

)

, (3.1)

where kx is the natural number that satisfies x − 1 ≤ kx < x. This function converges for

large x as f(∞) = − ln(π/2) ∼ −0.45. In the following analysis, we approximate this func-

tion by f(∞) for x & 10, because an error induced by this approximation is of O(1/(2x)).

First, let us evaluate the contributions from the bulk 10H Higgs hypermultiplet with

BCs in eq. (2.8) above the (half of) compactification scale. Here we do not introduce parity-

odd bulk masses, for simplicity. The KK spectra of the doublets and triplets are n/R and

(n + 1/2)/R, respectively. A pair of the doublet and triplet compose a (full) multiplet of
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SU(5), and then the contribution from this pair is common to the flow of each coupling.

This means that a triplet contributes to the flows of δα−1
i by the same factor as a doublet

but with the opposite sign. In each KK state, there are four doublets or four triplets except

for the zero-modes. (The zero-modes consist of only the two Higgs doublets.) Therefore

the contribution of the 10H hypermultiplet above 1/(2R) is given by

∆Hδα−1
i (µ) = −2

δCi
D

2π
f (2Rµ) ∼ δCi

D

π
ln
(π

2

)

, (3.2)

where δCD = (0, 1/5,−3/10) is the contribution by the Higgs doublet to the flow of δα−1
i .

On the other hand, the contribution from the two Higgs-doublet superfields localized on

the brane is given by

∆Hδα−1
i (µ) = −δCi

D

π
ln (2Rµ) , (3.3)

as in the usual 4D models. Comparing eqs. (3.2) and (3.3), we notice that the sign is

flipped when the Higgs multiplets start propagating in the bulk.

Next we evaluate the contributions from the gauge multiplet with the BCs in eq. (2.1).

The KK modes with a mass n/R in Aa
µ compose an SO(10) multiplet together with those

with a mass (n + 1/2)/R in Aâ
µ, so that the former contributes to the flows of δα−1

i by

the same factor as the latter but with the opposite sign. Since a massless vector (chiral)

supermultiplet contributes −3 (1), a massive vector supermultiplet contributes −3+1 = −2.

Thus, above 1/(2R), the SO(10) multiplet (Aa
µ, Aâ

µ) contributes to the flow of δα−1
i as

∆gδα
−1
i (µ) = −

δCi
g

2π
(−2 ln (2Rµ) − f (2Rµ)) ∼ −

δCi
g

2π

(

−2 ln (2Rµ) + ln
(π

2

))

, (3.4)

where δCg = (0, 2, 3) is the contribution from the MSSM gauge sector.

As for the matter fields, they do not contribute to the flows of δα−1
i because they

compose degenerate SO(10) full multiplets. Then, in summary, we obtain

δα−1
i (µ) ∼ δα−1

i

(

1

2R

)

−
δCi

g

2π

(

−2 ln (2Rµ) + ln
(π

2

))

+ ∆Hδα−1
i (µ). (3.5)

Defining ΛG by δα−1
2 (ΛG) = 0 in the MSSM, the value of α−1

i (1/(2R)) is determined as

δα−1
i

(

1

2R

)

= δα−1
i (ΛG) +

δbi

2π
ln (2RΛG) , (3.6)

where δbi = (0,−28/5,−48/5) is the difference of the beta functions in the MSSM.

Now we can estimate the deviations from the MSSM, depending on the Higgs profiles.

We determine the value of Λ∗ by use of δα−1
2 (Λ∗) = 0. By imposing δα−1

3 (Λ∗) = 0, we

determine 1/(2R) and Λ∗ as a function of δα−1
3 (ΛG), which is the problematic disagree-

ment of the QCD coupling in the 4D minimal SU(5) GUT. Neglecting the GUT threshold

correction, the deviation is estimated as δα−1
3 (ΛG) = 0.855 ± 0.315 [4]. Anyhow, the GCU

crucially depends on whether the Higgs fields are located in the bulk or on the brane, so

we analyze the GCU in each case.
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Bulk Higgs case

Equation (3.2) derives

δα−1
i (µ) ∼ δα−1

i

(

1

2R

)

−
δCi

g

2π

(

−2 ln (2Rµ) + ln
(π

2

))

+
δCi

D

π
ln
(π

2

)

. (3.7)

Taking δα−1
i (Λ∗) = 0, we can calculate (ln (2RΛG) , ln (2RΛ∗)) as

(

ln (2RΛG)

ln (2RΛ∗)

)

=

(

1
32πδα−1

3 (ΛG) − ln
(

π
2

)

7
152πδα−1

3 (ΛG) − ln
(

π
2

)

)

=

(

4.00

5.78

)

(3.8)

for δα−1
3 (ΛG) = 0.855. This means

(2RΛG, 2RΛ∗) = (55, 320), (3.9)

which is consistent with refs. [4]. In this case, the mass of the lightest modes in Aâ
µ is eval-

uated as 1/(2R) = 3.6×1014 GeV, which is too light to be consistent with the proton decay

constraint unless the coupling gâ
eff is small as gâ

eff/g4 < 0.12 (0.21) for αH = 0.01 (0.003).17

It can be achieved when the 1st generation matter is localized around y = πR. (A typical

case is gâ
eff = 0 which corresponds to the matters strictly localized on the y = πR brane.)

This constraint plays a crucial role for the construction of models as shown in section 2.4.

Brane Higgs case

By similar calculations, we obtain
(

ln (2RΛG)

ln (2RΛ∗)

)

=

(

−8.5

−13

)

(3.10)

by use of eq. (3.3). However, this means Λ∗ < ΛG < 1/(2R), a nonsense relation. This

implies the precise GCU is difficult in the brane Higgs scenario. Thus, introduction of extra

SO(10) incomplete multiplets on the y = πR brane might be required for the precise GCU.

Recalling that the light triplet Higgs multiplets are preferred for the GCU in the

4D minimal GUT [5], the bulk Higgs scenario, which can have the light triplets, might be

preferred than the brane Higgs scenario. (We should emphasize again that the light triplets

in the 4D GUT induces too rapid proton decay.)

4. Interval BCs by fake Higgs

Some of the interval BCs can be obtained from an orbifold S1/Z2 by a method which we

call the fake Higgs construction. In this paper we focus on such types of BCs, which are

expected to be consistent with the tree-level unitarity and the Ward-Takahashi identities [9,

10]. The fake Higgs construction of the interval BCs was first introduced in ref. [12]. For

reader’s convenience, we review this method in this section. We discuss general arguments

first, and then give the SO(10) BCs on an interval.

17For the smaller value by 1-σ, δα−1

3
(ΛG) = 0.539, the gauge boson mass is modified as 1/(2R) =

1.9 × 1015GeV, which still requires a little bit small gâ
eff or |αH | as gâ

eff/g4 < 0.60 (1.1) for αH = 0.01

(0.003).
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4.1 General arguments

In the orbifold, BCs are strictly restricted by the orbifolding parity if there are no bound-

ary terms. Namely, fields with even (odd) parities follow the Neumann (Dirichlet) BCs

automatically. However, in the interval, the even (odd) parity does not automatically

correspond to the Neumann (Dirichlet) BC. Thus, more general BCs are possible on the

interval, which broaden the possibility of the model-building. Some of them are obtained

by introducing 4D scalar fields on the boundaries, whose VEVs break part of the residual

symmetries under the orbifold projection, and taking their VEVs to infinity. We name such

boundary fields as fake Higgs fields because they are not dynamical degrees of freedom af-

ter taking the limit. The effects of the boundary Higgs fields are replaced by the boundary

masses after they get VEVs. The detailed calculations are provided in appendices. In this

subsection we will explicitly see how the boundary masses change the mass spectra and

BCs of the bulk fields in some simple examples to illustrate the situation.

4.1.1 Gauge sector

Here we consider a case that part of the gauge symmetries is broken at y = πR by the

boundary masses Mâ for the gauge fields Aâ
µ, which are induced by the VEVs of the bound-

ary fake Higgs fields. The mass spectrum is determined by eq. (A.19) in appendix A.1. In

the flat spacetime, it becomes

tan(mâ,nπR) =
Mâ

2mâ,n
, (4.1)

and the mode functions (profiles of wave functions) are given by

f â
n(y) =

(

πR

2
+

Mâ

4m2
â,n + M2

â

)−1/2

cos(mâ,ny), (4.2)

where mâ,n are solutions of eq. (4.1).

In the case of no boundary mass, i.e., Mâ = 0, the gauge field Aâ
µ follows the Neumann

BCs at both boundaries and the mass eigenvalues are mâ,n = n/R (n: integer), which is just

the case of the orbifold. If we turn on the boundary mass Mâ, the eigenvalues are shifted as

mâ,n =
n

R
+

1

πR
arctan

( Mâ

2mâ,n

)

. (4.3)

For a finite Mâ, the shift of the mass eigenvalue monotonically decreases as the KK level n

increases, and becomes negligible for mâ,n ≫ Mâ. In the limit of Mâ → ∞, on the other

hand, all eigenvalues are uniformly shifted by 1/(2R), which indicates that the boundary

condition at y = πR changes from Neumann to Dirichlet. This can be seen explicitly from

eq. (4.2). The boundary value of the mode function at y = πR is given by

∣

∣

∣f â
n(πR)

∣

∣

∣ =

(

πR

2
+

Mâ

4m2
â,n + M2

â

)−1/2
∣

∣

∣

∣

∣

∣

2mâ,n
√

4m2
â,n + M2

â

∣

∣

∣

∣

∣

∣

, (4.4)

by using eq. (4.1). In the limit of Mâ → ∞, this goes down to zero, i.e., f â
n(y) follows the

Dirichlet BC at y = πR. We should remember that the parity eigenvalues never change

at any BCs realized by the fake Higgs.
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4.1.2 Hypermultiplet sector

Next we see mass spectra of hypermultiplets in the presence of boundary masses. In

appendix A.2.1, we consider a case that the bulk hypermultiplets have mass terms localized

at y = πR. Here let us focus on a case that two hypermultiplets have only the boundary

Dirac mass η in a flat spacetime,18 for simplicity. We take the orbifold parities of the

hypermultiplets as eq. (A.24). In this case, eq. (A.37) is reduced to

tan2(mnπR) = |η|2 , (4.5)

where mn is a mass eigenvalue of the n-th KK mode. The solution of eq. (4.5) is given by

mn =
n

R
± arctan |η|

πR
. (4.6)

It should be noticed that all mass eigenvalues receive the same shift due to the boundary

mass η independently of the KK level n, even for finite η. This is in contrast to the case of

the gauge sector in eq. (4.3). In the limit of |η| → ∞, the shift of the mass eigenvalues be-

comes 1/(2R), which means that BC of even-parity fields at y = πR changes from Neumann

to Dirichlet. The mode functions defined in eq. (A.29) are (for 0 < y < πR) given as

fh,n(y) = αh,n cos(mny), fH,n(y) = ± η∗

|η|α
∗
h,n cos(mny),

f c
h,n(y) = −α∗

h,n sin(mny), f c
H,n(y) = ∓ η

|η|αh,n sin(mny), (4.7)

where the double signs correspond to that in eq. (4.6), and the complex constants αh,n’s

are determined by the normalization condition, eq. (A.39). Again, we should remember

that the parity eigenvalues do not change even when BCs change.

When we take orbifold parities as eq. (A.44), eq. (4.5) is modified as

cot2(mnπR) = |η|2 , (4.8)

where the mass spectrum is given by

mn =
n + 1

2

R
± arctan |η|

πR
. (4.9)

It means that the shift of the eigenvalues by η is the same as that in eq. (4.6). Notice

that no zero-mode exists when η = 0, however, it appears in the limit of |η| → ∞. This

indicates that BC of h at y = πR changes from Dirichlet to Neumann. The mode functions

are the same as eq. (4.7), but mn in the arguments are now given by eq. (4.9) and the

double signs correspond to that in it.

Note that BCs of the mode functions fφ,n and f c
φ,n (φ = h,H) are related to each other

by the bulk mode equations in eq. (A.30). Therefore if BC of a chiral multiplet changes

from Neumann to Dirichlet, that of its chiral partner inevitably changes from Dirichlet to

18The parameter η is dimensionless, which corresponds to a ratio of the fake Higgs VEV to the 5D cutoff

scale Λ∗.
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Neumann. Since the orbifold parities are unchanged by the boundary terms, the mode

function of a parity-odd field becomes discontinuous at the boundary when BC changes

from Dirichlet to Neumann.

A similar relation exists between V A and ΦA (A = a, â) in the gauge multiplet. As

will be mentioned in appendix A.1, the gauge-scalar multiplet ΦA is absorbed into the

N = 1 vector multiplet ∂yV
a. This means that the mode functions for the former are the

same as the derivative of the mode functions for the latter. On the other hand, the mode

equation for AA
y is decoupled from AA

µ by choosing a particular gauge-fixing function. So

the mode functions and KK spectrum for AA
y are independent of the boundary masses for

AA
µ . (See, for example, ref. [36].) It seems contradict with the above relation between V A

and ΦA. However, we should remind that AA
y is unphysical degree of freedom because it is

eaten by AA
µ through the “Higgs mechanism”. In fact the mode function and the spectrum

for AA
y are gauge-dependent. Thus, we can always choose a gauge-fixing function for the

KK spectrum of AA
y to coincide with that of AA

µ (except for the zero-mode). The N = 1

superfield description in this paper corresponds to this gauge.

When we take orbifold parities as eq. (A.40), situation is quite different from the

previous two cases. Equation (A.43) is reduced to

sin(mnπR) cos(mnπR) = 0, (4.10)

which means that the spectrum mn = n/(2R) is unchanged by the boundary mass η. Thus

the zero-mode always exists irrespectively of the value of η. The mode functions have

explicit |η|-dependence (for 0 < y < πR) as

fh,n(y) = αh,n cos(mny), fH,n(y) = αH,n cos(mny),

f c
h,n(y) = −α∗

h,n sin(mny), f c
H,n(y) = −α∗

H,n sin(mny), (4.11)

where

αH,n =

{

− 1
ηα∗

h,n (n: even),

η∗α∗
h,n (n: odd).

(4.12)

This is in contrast to the previous cases, where |η|-dependence of the mode function appears

only through the mass eigenvalue. For sin(mnπR) = 0 (i.e., n is even), for example,

the modes reside only in (H,Hc) when η = 0. Equation (4.12) means that this mode

continuously moves from (H,Hc) to (h, hc) as |η| increases. We can also infer this behavior

from the fact that BCs are interchanged between the two hypermultiplets when |η| goes

from zero to infinity.

Finally we consider a mixing mass between a bulk hypermultiplet (H,Hc) and a chiral

multiplet χ localized on the y = πR brane. Here we focus on a simple case that a bulk

mass term is absent and the spacetime is flat. Then eq. (A.56) is reduced to

tan(mnπR) =
|ξ|2

2(mn ± |mχ|)
, (4.13)

for the parity assignment of eq. (A.48), and

cot(mnπR) = − |ξ|2
2(mn ± |mχ|)

, (4.14)
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for the parity assignment of eq. (A.57). The mixing parameter ξ has mass-dimension 1/2

and the mass parameter for χ, mχ, has mass-dimension 1. (See eq. (A.49).) Equation (4.13)

has the same forms as eq. (4.1) if we replace |ξ|2 with Mâ and set mχ = 0. Thus the |ξ|-
dependence of the spectrum is similar to that of the gauge multiplet. Due to the existence

of the boundary term at y = πR, the parity-odd field becomes discontinuous there. From

eq. (A.51) (or the counterpart in the case of eq. (A.57)), the 4D chiral multiplet χ is

expressed as this discontinuity.

4.2 Fake Higgs in SO(10) GUT

In section 2 we introduced SO(10) incomplete multiplets and SO(10)-breaking interactions

on the y = πR brane by hand, since the gauge group is already reduced to the SM gauge

symmetry there. In this subsection, we show an explicit realization of this setup by the

fake Higgs construction. We start from an SO(10)-invariant theory on S1/Z2, where Ay

has odd-parity so that it has no zero-modes. This means that the charge quantization and

anomaly cancellation are ensured in this setup.

In order to obtain the BCs in eq. (2.1), we put 45H, 16H, and 16H fake Higgs fields on

the y = πR brane. The 45H Higgs takes a VEV of diag.(σ2, σ2, σ2, 0, 0) v45, which reduces

the gauge symmetry as SO(10) → SU(3)c×SU(2)L×SU(2)R×U(1)B−L at the energy scale

of v45, where σ2 is a Pauli matrix. And the 16H and 16H take VEVs in a D-flat direction

which lead to the breaking of SU(2)R × U(1)B−L → U(1)Y . Taking the VEVs of the fake

Higgs to infinity, the BCs for the gauge multiplet in eq. (2.1) are obtained. The 45H, 16H

and 16H fake Higgs fields are assumed to have suitable interactions among them in order

not to leave light (colored) degrees of freedom.19

4.2.1 Triplet-doublet splitting

Realization of the triplet-doublet splitting can be achieved by using a technique of

Dimopoulos-Wilczek (DW) mechanism [37]. The VEV of the 45H fake Higgs in a

direction of U(1)B−L generator induces the triplet Higgs masses as keeping the doublet

Higgs massless. It is justified as far as the doublet Higgs fields are contained in 10H,

since the doublets in 10H have vanishing U(1)B−L charges. Here we have to introduce

additional 10′
H

on the y = πR brane to allow the coupling between 10H and 45H.

This is because two identical 10H multiplets cannot form Yukawa interactions with 45H

according to the SO(10) group structure,

10 × 10 = 1S + 45A + 54S,

where subscript S (A) indicates that the product is (anti-)symmetric. The brane

superpotential which realizes the triplet-doublet splitting is given by20

WDW = δ(y − πR)

(

yDW
10H√
Λ∗

δ10H

45H10′
H + mDW10′

H

2

)

, (4.15)

19If these interactions are absent, components with (3, 2)1/6 and (3∗, 2)−2/3 for SU(3)c ×SU(2)L ×U(1)Y

become pseudo-NG bosons even in the limit of infinite VEVs. (If gauge interactions are switched off, they

become exact NG bosons.)
20Here we assume that terms such as 10H

2 which destroy the DW mechanism are absent.
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where δ10H
= 1(0) for bulk (brane) 10H field. It is natural to regard 10′

H
as a fake Higgs

too, so that mDW should be taken to infinity. When 10H is a brane field, only the MSSM

doublet Higgs components remain to be massless and other fields decouple by getting super-

heavy with large masses yDWv45 and mDW. When 10H is a bulk field, the KK spectrum is

given as eq. (4.13) by identifying ξ and mχ with yDW〈45H〉/√Λ∗ and mDW, respectively.

Thus, for the triplet components, the lightest KK modes obtain masses of O(1/(2R)), while

the doublet components remain to be massless, which do not couple to 45H.

4.2.2 Brane Interactions

Here we comment on an idea of taking zero limits of the fake Higgs couplings in order to

obtain the finite matter interactions and masses effectively. We know that the wrong GUT

relations of the mass spectra between the down-type quarks and charged leptons can be

modified by the effects of SU(5)-breaking VEVs. The realistic Yukawa matrices might be

induced from the brane interactions,

δ(y − πR)Yn,m
16

√
Λ∗

δ16

16
√

Λ∗
δ16

10H√
Λ∗

δ10
H

(

45H

Λ∗

)n(16H16H

Λ2
∗

)m

, (4.16)

where δ16 = 1(0) for bulk (brane) 16 matter. The lowest order, n = m = 0,

gives an SO(10)-symmetric Yukawa coupling.21 This is an example of the FN mecha-

nism. The effective Yukawa couplings are divergent by the infinite VEVs of the fake

Higgs for the finite magnitude of Yn,m (n,m > 0). So, in order to obtain finite

Yukawa couplings from eq. (4.16), the couplings Yn,m must be infinitely small as keep-

ing Yn,m〈45H〉n(〈16H〉〈16H〉)m finite. The finite Majorana masses of the right-handed

neutrinos might be also obtained from the brane interaction,

δ(y − πR)ω
16

√
Λ∗

δ16

16
√

Λ∗
δ16

16H16H

Λ∗

, (4.17)

where a coupling ω should be tuned for the suitable magnitudes of Majorana masses.22

5. Summary and discussion

We have discussed 5D SUSY GUTs on the interval, where the gauge multiplets propagate

in the 5D bulk. Interval BCs make the rank reduction of the gauge symmetry possible

in contrast to the orbifold BCs. Although this idea of the rank reduction by BCs is well-

known [9], most models use it to break the electro-weak symmetry [13] but the application

to the GUT breaking has not been studied except for the trinification model [15].

We have investigated the 5D SO(10) iGUT, in which the gauge symmetry is directly

reduced to the SM without introducing GUT-breaking Higgs fields. This is in contrast to

the orbifold GUTs where the rank reduction is impossible. We can also consider iGUTs

based on other higher-rank gauge symmetries, such as E6.

21If 16H and 16H do not couple to the matter fields, which means m = 0, the CKM mixing angles vanish

because of the SU(2)R symmetry which commutes with 〈45H〉.
22The KK masses do not break the lepton number.
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To be more concrete, we investigated the GCU, the proton decay and the SO(10)

features such as t-b-τ unification and charge quantization for different localization of the

matter and Higgs fields. We also estimated the flavor violations by the SUSY partners.

We briefly summarize our results:

1. Bulk Higgs scenario.

The GCU is improved, i.e., the small disagreement of the QCD coupling from the

predicted value in the 4D GCU can be corrected by the existence of the light triplet

Higgs modes. For this purpose, a compactification scale lower than the GUT scale is

required, demanding the matter fields to be localized around the y = πR brane for

the proton stability.

Because the bulk Higgs fields can couple to the SUSY breaking sector, the mu term

can be induced through a contact term. In a similar way, the scalar soft squared

masses for the Higgs fields can be generated and then induces the flavor violations

via the RGE effects, which is similar to that in the MSSM with the right-handed

neutrinos.

2. Brane Higgs scenario.

We can introduce only the doublet components of the physical Higgs on the

SO(10)-breaking brane. This means that there is no dimension-five proton decay

operators induced by the triplet Higgses. Additional SO(10)-incomplete multiplets

might be needed for realizing the precise GCU.

In order to realize an appropriate µ term, some additional mechanism such as the

NMSSM may be required.

3. Bulk matter scenario.

The charge quantization of Q(p+) = −Q(e−) is ensured. If the 3rd generation

matter field is localized around the SO(10)-preserving brane, the t-b-τ unification

can be also realized.

Since bulk matters in general cause the SUSY flavor problem, another source of SUSY

breaking may be needed which induces flavor-independent soft masses. When the 1st

and 2nd generations are localized around the y = πR brane, which is required by the

proton decay constraint for the improved GCU, the flavor violations are suppressed.

When the 3rd generation has overlapping with the SUSY breaking brane, the contact

term generates a sizable contribution to the (3, 3) element of the scalar soft mass ma-

trices at the mediation scale, in the flavor basis. Although the off-diagonal elements

are negligible in the flavor basis, the flavor violation can occur through the mixing ma-

trix between the flavor and the mass bases. Especially if this mixing matrix is given by

the CKM matrix, the flavor violation is estimated around the experimental bounds.

4. Brane matter scenario.

We loose some of the GUT-predictions such as the charge quantization and the t-b-τ

unification.
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The SUSY flavor problem can be solved by the sequestering (gaugino mediation),

and the dimension-six proton decay processes are absent in this setup.

In each case, all dimension-five proton decay processes can be suppressed by the (ap-

proximate) R-symmetry [3]. The realistic Yukawa interactions and the Majorana masses

can be reproduced with the help of the superpotential localized on the SO(10)-breaking

brane. As for the anomaly cancellation, the automatic cancellation of SO(10) is lost once

SO(10)-incomplete multiplets are introduced on the SO(10)-breaking brane. Here, we

would emphasize that the couplings between the bulk matter fields and the gauge fields

for the broken generators (e.g. the X gauge boson for SU(5) models) are non-vanishing,

and induce the proton decay via the dimension-six operators. This is in great contrast

with the orbifold GUTs where these couplings are absent because of the constrained parity

assignments.

The interval BCs were first considered in ref. [9]. Then, ref. [10] investigates their con-

sistency and finds some BCs that violate the tree-level unitarity and the Ward-Takahashi

identities. In order to avoid such dangerous BCs, we used BCs obtained by introducing

Higgs fields localized on the boundaries and taking a limit that their VEVs go to infinity [9],

which we call the fake Higgs construction.

Finally, let us comment on the warped spacetime. The iGUTs can be applied also in

the warped 5D background [34]. The equations in the appendices are useful also in the

warped setup. We mentioned that the constraints from the dimension-six proton decay

are largely modified from the flat case due to the wave-function profiles of the lower KK

modes, while the discussion on the symmetry breaking pattern and the location of the

hidden sector are not. As for the GCU, we have a technical difficulty in the analysis since

the KK mass spectrum cannot be calculated analytically, although it is expected that

qualitative features are not drastically changed from the flat case. If the gauge coupling

evolution is defined by two-point Green functions of the gauge fields with external lines

on the UV brane, it develops logarithmically, and thus is calculable [38]. In this case, the

difference of the gauge couplings are frozen out above the IR scale. Namely the GCU is

the same as the situation in the MSSM, when the IR scale is the GUT scale.
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A. KK expansion with boundary masses

In this appendix, we review derivations of the KK spectra and profiles in a general setup

with boundary masses. The 5D metric is given by

ds2 = GMNdxMdxN = e−2σ(y)ηµν + dy2, (A.1)
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where M,N = 0, 1, 2, 3, 5 are 5D indices, µ, ν = 0, 1, 2, 3 are 4D ones, and y ≡ x5. The warp

factor σ(y) is assumed to be a monotonic and nondecreasing function of y and σ(0) = 0.

A.1 Gauge sector

A 5D gauge multiplet consists of a gauge-scalar Σ, a gauge field AM , and gauginos λi,

where i = 1, 2 is the SU(2)R index. Each field is matrix-valued, i.e.,

AM =
∑

A

AA
MTA, (A.2)

where TA is a generator of the gauge group. The 5D Lagrangian is written in the 4D N = 1

superspace by introducing the following N = 1 superfields [39, 21],23

V ≡ −θσµθ̄Aµ + ie
3

2
σθ2θ̄λ̄1 − ie

3

2
σ θ̄2θλ1 +

1

2
θ2θ̄2D,

Φ ≡ 1

2
(Σ + iAy) + e

1

2
σθλ2 + θ2FΦ, (A.3)

where D and FΦ are auxiliary fields. We focus on a simple case that the orbifold projection

does not break the gauge group at all. Namely, the orbifold parity is assigned as

V (+,+), Φ (−,−). (A.4)

The left (right) signs denote the parities at y = 0 (y = πR).

The 5D Lagrangian is expressed as

Lgauge =

[∫

d2θ
1

2g2
5

tr (WαWα) + h.c.

]

+ e−2σ

∫

d4θ
1

g2
5

tr
(

V2
5

)

, (A.5)

where g5 is the 5D gauge coupling, Wα and V5 are the gauge-covariant quantities defined as

Wα ≡ 1

4
D̄2eV Dαe−V = −1

4
D̄2DαV + · · · ,

V5 ≡ eV ∂ye
−V + Φ + eV Φ†e−V = −∂yV + Φ + Φ† + · · · , (A.6)

where the ellipses denote quadratic and higher terms. The normalization of the generators

are taken as

tr
(

TATB
)

=
1

2
δAB . (A.7)

We introduce 4D chiral multiplets φI
0 and φJ

π localized at the orbifold boundaries

at y = 0 and πR, respectively. The indices I, J run over different irreducible representations

of the gauge group. They interact with the 5D gauge multiplet as

Lbd = e−2σ

∫

d4θ

{

∑

I

φI†
0 e−V φI

0δ(y) +
∑

J

φJ†
π e−V φJ

πδ(y − πR)

}

+ · · · , (A.8)

where the ellipsis denotes the self-interaction terms of φ0,π.

23For the extension to the 5D SUGRA, see ref. [40]. We will follow the notation of ref. [41].
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The above Lagrangians are invariant under the (super-) gauge transformation,

eV → eΛeV eΛ†

,

Φ → eΛ (Φ − ∂y) e−Λ,

φI
0 → eΛ(0)φI

0, φJ
π → eΛ(πR)φJ

π . (A.9)

The transformation parameter Λ is a chiral superfield. Under this transformation, the

gauge-covariant quantities transform as

Wα → eΛWαe−Λ,

V5 → eΛV5e
−Λ. (A.10)

By choosing the gauge parameter Λ as

exp {Λ(x, y)} = P exp

{

−
∫ y

0
dy′ Φ(x, y′)

}

, (A.11)

we move into the gauge where Φ = 0. The symbol P stands for the path ordering operator

from left to right. Recall that all (non-zero) KK modes of Ay are absorbed into those of

Aµ by the “Higgs mechanism”, and the latter obtain the KK masses. Thus we can call it

unitary gauge. Note that V is no longer in the Wess-Zumino gauge, and its lowest and the

next lowest components for θ, θ̄ are physical degrees of freedom.

Now we assume that the scalar components of φI
0 and φJ

π get VEVs and break the

gauge group to a subgroup at the boundaries. Then the Lagrangian becomes

L =

[∫

d2θ
1

2g2
5

tr (WαWα) + h.c.

]

+
e−2σ

g2
5

∫

d4θ tr
{

(−∂yV )2 + · · ·
}

+
e−2σ

2g2
5

∫

d4θ







∑

I,A,B

M(I)AB
0 V AV Bδ(y) +

∑

J,A,B

M(J)AB
π V AV Bδ(y − πR) + · · ·







,

(A.12)

where M(I)AB
0 and M(J)AB

π are the boundary mass parameters defined by

M(I)AB
0 ≡ g2

5〈φI
0〉†TATB〈φI

0〉, M(J)AB
π ≡ g2

5〈φJ
π〉†TATB〈φJ

π〉. (A.13)

The ellipses in eq. (A.12) shows the terms involving the fluctuation around the VEVs,

which decouple in the limit of M0,π → ∞. Here we have assumed that SUSY is preserved

when φ0,π get the VEVs.

In the following discussions, we consider a case of M(I)AB
0 = 0. Then we can always

diagonalize the matrix
∑

J M(J)AB
π for the indices A,B by using the gauge symmetry, i.e.,

∑

J M(J)AB
π = MAδAB . Thus eq. (A.12) becomes

L =

[

1

4g2
5

∫

d2θ
∑

A

WAαWA
α + h.c.

]

− 1

2g2
5

∫

d4θ
∑

A

V A
{

∂y

(

e−2σ∂yV
A
)

− e−2σMAV Aδ(y − πR) + · · ·
}

, (A.14)
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where we have performed the partial integration. Now we expand the 5D superfield V into

4D KK modes,

V A(x, y, θ, θ̄) =
∑

n

fA
n (y)V A

n (x, θ, θ̄). (A.15)

The mode equation for the KK modes is read off from eq. (A.14) as

∂y

(

e−2σ∂yf
A
n

)

− e−2σMAfA
n δ(y − πR) = −m2

A,nfA
n . (A.16)

Since V A is a Z2-even superfield, the mode functions fA
n (y) are even functions around

y = 0, πR. Thus from eq. (A.16), we obtain the following BCs.

∂yf
A
n |y=0 = 0,

[

∂yf
A
n

]πR+ǫ

πR−ǫ
= MAfA

n (πR). (A.17)

The first condition is the ordinary Neumann BC while the second one is a mixed-type BC.

In fact the latter is reduced to the Neumann BC in the limit of MA → 0, and it becomes

the Dirichlet BC in the limit of MA → ∞.

The general solution of eq. (A.16) is written as

fA
n (y) = αA

n C(y,ma,n) + βA
n S(y,ma,n), (A.18)

where αA
n and βA

n are real constants determined by the BCs. The functions C(y,m) and

S(y,m) are defined in appendix B. The first condition in eq. (A.17) means βA
n = 0. So the

second condition is translated into

−2C ′(πR,ma,n) = MAC(πR,ma,n), (A.19)

where the prime denotes the y-derivative. This determines the mass spectrum {ma,n}. The

remaining constant αA
n is fixed by the normalization condition,

∫ πR

0
dy
(

fA
n (y)

)2
= 1. (A.20)

A.2 Hypermultiplet sector

Next we consider a matter sector of hypermultiplets (H i,H
c
i ), where H i and Hc

i are

N = 1 chiral superfields and belong to conjugate representations of the gauge group.

Namely, under the gauge transformation eq. (A.9), they transform as

Hi → eΛH i, Hc
i → Hc

ie
−Λ. (A.21)

The index i runs over the irreducible representations. The bulk Lagrangian of this sector

is given by

Lhyper
bulk = e−2σ

∫

d4θ
∑

i

(

H
†
ie

−V H i + Hc
ie

V H
c†
i

)

+e−3σ

[

∫

d2θ
∑

i

{

1

2
(Hc

i∂yH i − ∂yH
c
iH i)

− Hc
iΦHi + Miε(y)Hc

iH i

}

+ h.c.

]

, (A.22)
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where Mi’s are bulk mass parameters and ε(y) is the periodic step function.

For simplicity, let us focus on two hypermultiplets among (H i,H
c
i), and denote them

as (h, hc) and (H,Hc). They are components either in the same gauge multiplet or different

one. Then the Lagrangian for them is written as

Lhyper
bulk = e−2σ

∫

d4θ
{

|h|2 + |hc|2 + |H|2 + |Hc|2
}

+e−3σ

[∫

d2θ

{

1

2
(hc∂yh − h∂yh

c + Hc∂yH − H∂yH
c)

+ Mhε(y)hch + MHε(y)HcH

}

+ h.c.

]

+ · · · , (A.23)

where Mh and MH are the bulk mass parameters. In the case that (h, hc) and (H,Hc)

belong to the same gauge multiplet, Mh = MH .

A.2.1 Boundary mass terms

Here we consider effects from mass terms localized at y = πR, which are induced by the

VEVs of φJ
π . (We do not consider the boundary masses coming from φI

0, for simplicity.)

Each chiral superfield has an opposite orbifold parity to the chiral partner (contained in the

same hypermultiplet). Thus there are the following three cases according to the orbifold

parity assignments.

Case 1. First we consider a case that both the hypermultiplets have the same parities

at both the orbifold boundaries, i.e.,

h (+,+), hc (−,−), H (+,+), Hc (−,−). (A.24)

The left (right) signs denote the parities at y = 0 (y = πR). In this case the most general

boundary mass terms are given by

Lhyper
bd = e−3σ

[

∫

d2θ
(

h H
)

(

κ η

η λ

)(

h

H

)

δ(y − πR) + h.c.

]

, (A.25)

where the Majorana masses κ, λ and the Dirac mass η are dimensionless parameters.24 We

treat them as complex parameters, although two phases among κ, λ and η can be absorbed

by field redefinitions unless the phases of h and H are fixed in another sector.

The mode equations are given by

−1

4
D̄2h̄ − e−σ

(

∂y −
3

2
σ′ − Mhε

)

hc + 2e−σ(κh + ηH)δ(y − πR) = 0,

−1

4
D̄2h̄c + e−σ

(

∂y −
3

2
σ′ + Mhε

)

h = 0,

−1

4
D̄2H̄ − e−σ

(

∂y −
3

2
σ′ − MHε

)

Hc + 2e−σ(ηh + λH)δ(y − πR) = 0,

−1

4
D̄2H̄c + e−σ

(

∂y −
3

2
σ′ + MHε

)

H = 0. (A.26)

24These parameters correspond to ratios of the boundary Higgs VEVs to the 5D cutoff scale Λ∗.

– 24 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
4

The BCs at y = 0 are determined only by the orbifold parities25 as

hc|y=0 = Hc|y=0 = 0, (A.27)

since there are no boundary terms there. On the other hand, the BCs at y = πR are

modified by the boundary mass terms as

[hc]πR+ǫ
πR−ǫ = 2 {κh + ηH}y=πR ,

[Hc]πR+ǫ
πR−ǫ = 2 {ηh + λH}y=πR . (A.28)

Now we expand the 5D superfields into 4D KK modes as

h(x, y, θ) =
∑

n

e
3

2
σfh,n(y)hn(x, θ), hc(x, y, θ) =

∑

n

e
3

2
σf c

h,n(y)hc
n(x, θ),

H(x, y, θ) =
∑

n

e
3

2
σfH,n(y)Hn(x, θ), Hc(x, y, θ) =

∑

n

e
3

2
σf c

H,n(y)Hc
n(x, θ). (A.29)

The mode equations in the bulk (0 < y < πR) are given by

(∂y + Mφ) fφ,n = mneσf c∗
φ,n,

(∂y − Mφ) f c
φ,n = −mneσf∗

φ,n, (A.30)

where φ = h,H. From the BCs in eq. (A.28), the mode functions must satisfy the

conditions,

f c
h,n(0) = f c

H,n(0) = 0, (A.31)

f c
h,n(πR − ǫ) = −κfh,n(πR) − ηfH,n(πR),

f c
H,n(πR − ǫ) = −ηfh,n(πR) − λfH,n(πR). (A.32)

Solutions of eq. (A.30) with the BC in eq. (A.31) are given by

fφ,n(y) = αφ,ne−MφyCMφ
(y,mn),

f c
φ,n(y) = −α∗

φ,neMφyS−Mφ
(y,mn), (A.33)

where φ = h,H, and (αh,n, αH,n) are complex constants determined by the BCs. The

functions CM (y,m) and SM (y,m) are defined in appendix B. Thus the BCs in eq. (A.32)

are rewritten as

M4











Re αh,n

Re αH,n

Imαh,n

Im αH,n











= 0, (A.34)

with

M4 ≡











κRC̃Mh
− S̃−Mh

ηRC̃MH
−κIC̃Mh

−ηIC̃MH

ηRC̃Mh
λRC̃MH

− S̃−MH
−ηIC̃Mh

−λIC̃MH

κIC̃Mh
ηIC̃MH

κRC̃Mh
+ S̃−Mh

ηRC̃MH

ηIC̃Mh
λIC̃MH

ηRC̃Mh
λRC̃MH

+ S̃−MH











, (A.35)

25The BCs for h and H do not provide independent informations from those for hc and Hc, because the

former mode functions are related to the latter ones through the bulk equations of motion. (See eq. (A.30).)
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where

S̃−M ≡ eMπRS−M (πR,mn), C̃M ≡ e−MπRCM (πR,mn), (A.36)

and κR ≡ Re κ, κI ≡ Imκ, and so on. The condition that eq. (A.34) has a nontrivial

solution is

detM4 = C̃2
Mh

C̃2
MH

(

T̃ 2
Mh

T̃ 2
MH

−2 |η|2 T̃Mh
T̃MH

−|λ|2 T̃ 2
Mh

−|κ|2 T̃ 2
MH

+
∣

∣κλ − η2
∣

∣

2
)

=0,

(A.37)

where

T̃M ≡ S̃−M

C̃M

. (A.38)

Equation (A.37) determines the mass spectrum. The complex constants αh,n and αH,n are

determined by eq. (A.34) with the solution of eq. (A.37), and the normalization condition,

∫ πR

0
dy
{

|fh,n(y)|2 + |fH,n(y)|2
}

= 1. (A.39)

Case 2. Next we consider a case that one hypermultiplet has the same parities at both

boundaries while the other has opposite parities, i.e.,

h (+,−), hc (−,+), H (+,+), Hc (−,−). (A.40)

In this case the most general boundary mass terms are given by

Lhyper
bd = e−3σ

[

∫

d2θ
(

hc H
)

(

κ η

η λ

)(

hc

H

)

δ(y − πR) + h.c.

]

, (A.41)

where the dimensionless mass parameters κ, λ and η are complex. Through similar cal-

culations to the Case 1, we obtain an equation that determines the mass spectrum. It

corresponds to eq. (A.37) with the replacement of

(S̃−Mh
, C̃Mh

) → (C̃Mh
,−S̃−Mh

). (A.42)

Namely, the mass spectrum is determined by

detM4 = S̃2
−Mh

C̃2
MH

(

T̃−2
Mh

T̃ 2
MH

+ 2 |η|2 T̃−1
Mh

T̃MH
− |λ|2 T̃−2

Mh
− |κ|2 T̃ 2

MH
+
∣

∣κλ − η2
∣

∣

2
)

= 0.

(A.43)

Case 3. Finally we consider a case that both the hypermultiplets have opposite parities

at the two boundaries, i.e.,

h (+,−), hc (−,+), H (+,−), Hc (−,+). (A.44)

In this case the most general boundary mass terms are given by

Lhyper
bd = e−3σ

[

∫

d2θ
(

hc Hc
)

(

κ η

η λ

)(

hc

Hc

)

δ(y − πR) + h.c.

]

, (A.45)
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where the dimensionless mass parameters κ, λ and η are complex. The equation that

determines the mass spectrum corresponds to eq. (A.37) with the replacement,

(S̃−Mh
, C̃Mh

) → (C̃Mh
,−S̃−Mh

),

(S̃−MH
, C̃MH

) → (C̃MH
,−S̃−MH

). (A.46)

Thus, the mass spectrum is determined by

detM4 = S̃2
−Mh

S̃2
−MH

(

T̃−2
Mh

T̃−2
MH

−2 |η|2 T̃−1
Mh

T̃−1
MH

−|λ|2 T̃−2
Mh

−|κ|2 T̃−2
MH

+
∣

∣κλ − η2
∣

∣

2
)

=0.

(A.47)

A.2.2 Mixing with boundary fields

Now let us consider effects from brane mass terms between a bulk hypermultiplet (H,Hc)

and a 4D chiral superfield χ localized on the y = πR brane.

Case 4. First we consider a case that the hypermultiplet has the same parities at both

boundaries, i.e.,

H (+,+), Hc (−,−). (A.48)

The boundary Lagrangian in this case is

Lbd =

{

e−2σ(πR)

∫

d4θ |χ|2 + e−3σ(πR)

[∫

d2θ

(

ξHχ +
1

2
mχχ2

)

+ h.c.

]}

δ(y − πR).

(A.49)

The constants ξ and mχ have mass-dimension 1/2 and 1, respectively. The equations of

motion are

−1

4
D̄2H̄ + e−σ

{

−
(

∂y −
3

2
σ′ − MHε

)

Hc + ξχδ(y − πR)

}

= 0,

−1

4
D̄2H̄c + e−σ

(

∂y −
3

2
σ′ + MHε

)

H = 0,

−1

4
D̄2χ̄ + e−σ(πR) {ξH|y=πR + mχχ} = 0, (A.50)

From the first equation, we obtain a relation between the boundary and bulk superfields as

[Hc]πR+ǫ
πR−ǫ = ξχ. (A.51)

Using this relation, the last equation in eq. (A.50) is rewritten as

[

−1

4
D̄2H̄c − e−σ

(

|ξ|2
2

H − m̂χHc

)]

y=πR−ǫ

= 0, (A.52)

where m̂χ ≡ mχξ̄/ξ. Thus the mode functions satisfy the following BC,

|ξ|2
2

fH,n(πR) − m̂χf c
H,n(πR − ǫ) = −eσ(πR)mnf c∗

H,n(πR − ǫ). (A.53)
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This is translated by using eq. (A.33) into

(

|ξ|2
2

C̃MH
− eσ(πR)mnS̃−MH

)

αH,n + m̂χS̃−MH
α∗

H,n = 0. (A.54)

The condition for it to have a nontrivial solution is

(

|ξ|2
2

C̃MH
− eσ(πR)mnS̃−MH

)2

−
∣

∣

∣
m̂χS̃−MH

∣

∣

∣

2
= 0, (A.55)

or

T̃MH
=

|ξ|2
2
(

eσ(πR)mn ± |mχ|
) . (A.56)

Case 5. Next we consider a case that the hypermultiplet has opposite parities at both

boundaries, i.e.,

H (+,−), Hc (−,+). (A.57)

The boundary Lagrangians in this case are

Lbd =

{

e−2σ(πR)

∫

d4θ |χ|2 + e−3σ(πR)

[∫

d2θ

(

ξHcχ +
1

2
mχχ2

)

+ h.c.

]}

δ(y − πR).

(A.58)

where ξ and mχ are complex parameters whose mass-dimensions are 1/2 and 1. Through

the similar calculations to the Case 4, we obtain an equation that determines the mass

spectrum. It is obtained from eq. (A.56) by the replacement,

(S̃±MH
, C̃±MH

) → (C̃∓MH
,−S̃∓MH

). (A.59)

Then the mass spectrum is determined by

T̃−1
MH

= − |ξ|2
2
(

eσ(πR)mn ± |mχ|
) . (A.60)

B. Bases of mode functions

This section shows the definitions and properties of functions, C(y,m), S(y,m), CM (y,m),

and SM (y,m), following ref. [42]. The functions C(y,m) and S(y,m) are defined as

solutions of
{

∂2
y − 2σ′∂y + m2e2σ

}

f = 0 (B.1)

with initial conditions of

C(0,m) = 1, C ′(0,m) = 0,

S(0,m) = 0, S′(0,m) = m. (B.2)

From the Wronskian relation, they satisfy

S′(y,m)C(y,m) − C ′(y,m)S(y,m) = me2σ(y). (B.3)
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Next we provide the definition of CM (y,m) and SM (y,m). Combining the two equa-

tions in eq. (A.30), we obtain the following type of the second order differential equation,

{

∂2
y − σ′∂y − M(M + σ′) + m2e2σ

}

fM = 0. (B.4)

By redefining fM(y) as

f̃M(y) ≡ eMyfM(y), (B.5)

eq. (B.4) becomes
{

∂2
y − (σ′ + 2M)∂y + m2e2σ

}

f̃M = 0. (B.6)

The functions CM (y,m) and SM (y,m) are solutions of eq. (B.6) which satisfy initial

conditions,

CM (0,m) = 1, C ′
M (0,m) = 0,

SM (0,m) = 0, S′
M (0,m) = m. (B.7)

Here let us define a function g̃M (y) as

g̃M (y) ≡ e−σ(y)−2My f̃ ′
M(y). (B.8)

Then it satisfies
{

∂2
y − (σ′ − 2M)∂y + m2e2σ

}

g̃M = 0. (B.9)

This means g̃M (y) ∝ f̃−M (y). Taking into account the initial conditions, we obtain

C ′
M (y,m) = −meσ+2MyS−M(y,m),

S′
M (y,m) = meσ+2MyC−M (y,m). (B.10)

Furthermore, using the Wronskian relation, we obtain

S′
M(y,m)CM (y,m) − C ′

M (y,m)SM (y,m) = meσ(y)+2My , (B.11)

which is translated into

CM (y,m)C−M (y,m) + SM (y,m)S−M (y,m) = 1, (B.12)

by using eq. (B.10).

B.1 Flat spacetime

Let us see explicit forms of CM (y,m) and SM (y,m) in the case of the flat spacetime, i.e.,

σ(y) = 0. In this case, eq. (B.1) is reduced to

(

∂2
y + m2

)

f = 0, (B.13)

and

C(y,m) = cos(my), S(y,m) = sin(my). (B.14)
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On the other hand, eq. (B.4) becomes

(

∂2
y − M2 + m2

)

fM = 0. (B.15)

Thus a general solution is given by

fM(y) = A cos
(
√

m2 − M2y
)

+ B sin
(
√

m2 − M2y
)

, (B.16)

where A and B are integration constants, and m2 ≥ M2 is assumed. From eqs. (B.5)

and (B.7), we obtain

CM (y,m) = eMy

{

cos
(
√

m2 − M2y
)

− M√
m2 − M2

sin
(
√

m2 − M2y
)

}

=
m√

m2 − M2
eMy cos

(
√

m2 − M2y + ϕ
)

,

SM (y,m) =
m√

m2 − M2
eMy sin

(
√

m2 − M2y
)

, (B.17)

where

ϕ ≡ arctan

(

M√
m2 − M2

)

. (B.18)

B.2 Randall-Sundrum spacetime

Finally we consider the case of the warped background setup of σ(y) = ky (k > 0, 0 ≤ y ≤
πR). In this case solutions of eq. (B.6) are expressed by the Bessel functions as

CM (y,m) =
πm

2k
eαky

{

Yα−1

(m

k

)

Jα

(m

k
eky
)

− Jα−1

(m

k

)

Yα

(m

k
eky
)}

=
πm

2k

eαky

sin πα

{

J1−α

(m

k

)

Jα

(m

k
eky
)

+ Jα−1

(m

k

)

J−α

(m

k
eky
)}

,

SM (y,m) = −πm

2k
eαky

{

Yα

(m

k

)

Jα

(

k

m
eky

)

− Jα

(m

k

)

Yα

(m

k
eky
)

}

=
πm

2k

eαky

sin πα

{

J−α

(m

k

)

Jα

(m

k
eky
)

− Jα

(m

k

)

J−α

(m

k
eky
)}

, (B.19)

where α ≡ (M/k) + 1/2. We can see

C(y,m) = Ck/2(y,m), S(y,m) = Sk/2(y,m), (B.20)

from eqs. (B.1) and (B.6).
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